Skip to main content
Search hero banner

Search results

Showing 441 - 460 of 823 results

Synchrotron Building - Mezzanine

Synchrotron commercial services

The Australian Synchrotron is a source of powerful X-rays and infrared radiation that can be used for a wide range of scientific and technical purposes. Synchrotron X-rays are millions of times brighter than those produced by conventional X-ray machines in laboratories and hospitals.

BioSAXS in tunnel

Biological small angle X-ray scattering beamline (BioSAXS)

The Biological Small Angle X-ray Scattering beamline will be optimised for measuring small angle scattering of surfactants, nanoparticles, polymers, lipids, proteins and other biological macromolecules in solution. BioSAXS combines combine a state-of-the-art high-flux small angle scattering beamline with specialised in-line protein purification and preparation techniques for high-throughput protein analysis.

ANSTO's Graduates on site at Lucas Heights

Graduate Profiles

What’s it like being a graduate at ANSTO? Read these profiles featuring some of our many graduates and scholarship recipients.

Far Infrared beamline

THz - Far Infrared

The THz/Far-IR Beamline couples the high brightness and collimation of a bend-magnet synchrotron radiation to a Bruker IFS125HR spectrometer providing high-resolution spectra (0.00096 cm-1) with signal to noise ratio superior to that of thermal sources up to 1350 cm-1 for gas-phase applications; the beamline also delivers signal to noise ratio superior to that of thermal sources up to 350 cm-1 for condensed phase samples.

Understanding the full impact of radiation on astronauts

Understanding the full impact of radiation on astronauts

In space, without the protection of the magnetosphere, the type and dose of radiation is considerably different to what is naturally experienced on earth. However, it is the secondary particles of lower energies created when galactic and cosmic radiation interacts with shielding that is of concern for astronauts.

International Space Station

Understanding the full impact of radiation on astronauts

In collaboration with the French National Institute of Health and Medical Research (INSERM) and the French International Space Agency (CNES), ANSTO scientists are undertaking research on the radiobiological effects of secondary particles that are created when radiation interacts with the shielding on the International Space Station.

Tree rings

Radiocarbon dating

Radiocarbon dating is a well-known method for determining the age of materials up to the age of approximately 50,000 years.

Improving the radiation tolerance of microelectronics for space

A team of Melbourne researchers and international partners from Italian Instituto Nazionale de Fisica Nucleare (INFN) and CERN, who are developing radiation-hardened semiconductor chips, used the unique state-of-art high energy ion microprobe on the SIRIUS ion accelerator at ANSTO’s Centre for Accelerator Science to test a prototype radiation-resistant computer chip

Pagination