Skip to main content

Accelerator Systems Overview

This page contains some of the technical data relating to the accelerator systems at the Australian Synchrotron.

Storage Ring 

The Australian Synchrotron is a light source with a 3 GeV electron storage ring with an average current of 200 mA and a circumference of 216 meters (about twice the length of a football field). The lattice (magnetic design) is a Chasman-Green design repeated 14 times to form the storage ring. 

ParameterValue
Energy (E) 3.03 GeV 
Rel. Gamma (γ) / Brho (Bρ) 5935 / 10.12 
Average Current (I) 200 mA 
Maximum Single Bunch Current (Isb) 10 mA 
Maximum Peak Current (Ipk) **** 300 A 
SR Circumference (C) 215.991 m 
SR Revolution (frev) 720.467 ns (1.38799 MHz) 
Energy Spread (σE) 1.027e-3 
Energy Loss (dipole only) *** 932 keV/turn (186 kW @ 200 mA) 
Cavity Voltage 2000 kV 
Cavity Frequency 499.677 MHz 
Cavity Power (3 cavity op) 140 * 3 = 420 kW 
(150 kW unavailable due to wall losses @ 600 kV) 
Synchronous Phase 2.66354 rad 
Linear Energy Acceptance 1.47 % 
Bunch Length (σz) 29.36 ps (8.801 mm) 
Momentum Compaction (αc) 0.00211 
Synchrotron Tune (νz) 0.00847 (11.757 kHz, 118 turns) 

 

ParameterHorizontalVertical
Tunes (νx, νy) 13.29 5.216 
Chromaticity (ξx, ξy) 
Emittance (εx, εx) 10.51 nm 0.13 nm (1.24% coupling)* 

Dipole 1 (7 degree source; beamline source)** 

  
Beam Size (σx, σy) 89.14 um 65.74 um (1.24% coupling)* 
Beam Divergence (σx', σy') 179.4 urad 6.556 urad 

Dipole 2 (6 degree source; XDB)** 

  
Beam Size (σx, σy) 88.01 um 65.59 um (1.24% coupling)* 
Beam Divergence (σx', σy') 178.2 urad 6.996 urad 

Straight 

  
Beam Size (σx, σy) 322.9 um 17.81 um (1.24% coupling)* 
Beam Divergence (σx', σy') 34.33 urad 7.355 urad 

*    Estimated values based on coupling values derived from a LOCO fitted model of our current golden configuration 
**   Source location is negative 7 degrees from the upstream straight (Beamline sources are mostly from this dipole). Dipole 2 can also be used and is negative 6 degrees from the downstream straight. 

*** energy_loss_in_eV_per_turn x average_beam_current = energy_loss_in_watts 

**** I_pk = I_sb * R / bunch_length * sqrt(2*pi). Calculated for 10 mA in low alpha operation where the bunch length is ~10 ps (3.0 mm). 

Insertion Devices (ID) 

The storage ring has many distinct types of insertion devices such as permanent magnet wigglers (PMW), superconducting magnet wigglers (SCW), APPLE2 undulator, in-vacuum undulators (IVU), superconducting magnet undulators (SCU), cryogenic permanent magnet undulators (CPMU). The properties of these IDs are listed below. 

 

ID ID Type Mag. Gap (mm) 

Mag. Len. 

(m) 

Period (mm)  Eph †  
(eV) 
Peak Field (T) Max. Phase Error (deg) Radiation Power (kW) Beamline 
02 SCU 8.0 1.7 16 2349 1.084 1.62 < 4.5 2.2 Bio-SAX 
03 IVU 6.6 22 4700 0.85 1.77 < 2.4 2.6 Protein Crystallography (MX) 
04 IVU 5.7 17.5 2600 0.826 1.35 < 3.0 2.4 Protein Crystallography (MX3) 
05 IVU 5.5 22 4000 0.96 1.97 < 2.4 2.1 X-ray Fluorescence (XFM) 
08 SCW 15.2 1.55 52 25000 4.2 20.4  
 
37.5 Imaging and Medical (IMBL) 
09 CPMU 5.7 19 1526 1.127 2.0 < 3.0 4.4 Nano-probe 
10 SCW 8.0 2.02 48 28696 4.7 20  
 
46.2 Advanced Diffraction and Scattering (ADS) 
12 PMW 14.0 100 11400 1.90 17.7  
 
8.2 X-ray Absorption (XAS) 
13 IVU 6.6 22 4700 0.85 1.77 < 2.4 2.6 Small Angle Scattering (SAX) 
14 APPLE2 16.0 75 84 0.72 5.04 < 2.7 1.1 Soft X-ray (SXR) 

† For IVUs: 3rd harmonic. For APPLE: 1st harmonic. For wigglers it is the critical energy. 

Injection System 

The electrons are sourced and delivered to the storage ring by the 3 GeV electron injector that consists of two electron accelerators: 100 MeV Linac and a 3 GeV Booster Synchrotron. 

The basic design parameters of the 100 MeV Linac are found in the table below. 

Parameter Value 
RF Frequency [MHz] 2998 
Max. Repetition rate [Hz] 5 (limited by gun) 
Pulse Duration [ns] 1 / 140 (single/multi bunch modes) 
Energy [MeV] 103 
Energy Spread [%] 0.7 
Energy Variation [%] < 0.5 
Normalised Emittance [mm mrad] 48 π mm mrad 
Total Charge [nC] 0.48 / 4.8 (single/multi bunch modes) 

The 3 GeV booster synchrotron is a fourfold symmetric FODO lattice design with basic design parameters listed in the table below. 

Parameter Injection Extraction 
Energy [GeV] 0.1 3.0 
Circumference [m] 

130.2 

 
Period [ns] 

434.3 

 
Tunes 

9.2 / 3.23 

 
Natural Chromaticity 

-8.83 / -11.5 

 
Beam Current [mA] 

 

Synchrotron Radiation Parameters 

  
Loss per turn [keV] 0.0009 743 
Radiation @ 5 mA [kW] 3.7 
Emittance [nm] 0.04 33 
Horizontal Damping [ms] 72 2.7 
Vertical Damping [ms] 93 3.5 
Longitudinal Damping [ms] 54 2.0 

RF Parameters 

  
Energy spread [%] 0.0031 0.094 
Bunch Length [mm] 0.3 19 
RF frequency [MHz] 

499.654 

 
Harmonic 

217 

 
RF Voltave [MV] 0.12 1.2 
Sychrotron Frequency [kHz] 184 100 

Magnets and Power Supplies (inc. Pulsed systems) 

The table below shows the parameters for pulsed magnets in the injection system. 

Parameter  Inj. Kicker  Inj. Septum  Ext Kicker  Ext Septum 
Design kick [mrad]  18.0  139.1  4.9  120.0 
Design field [G]  59  455  500  7880 
Design Current [A]  480  630  958  9456 
Length [m]  1.0  1.02  1.0  1.52 
Peak Field [G]  80  700  600  10,000 
Peak Current [A]  650  970  1150  12,000 
Peak Voltage [V]  2100  15  43,000  300 
Operating Point  9.620 kV  563.3 A  19.620 kV  8980.6 A 
Pulse Len./Flat. [ns]  150 (FT)  3000 (L)  150 (FT)  600,000 (L) 
Pulse Rise/Fall [ns]  190 (Fall)  -  300 (Rise)  
Power Supply  0.8kA/2.3kV  
PFN  
975A/20V  
Full Sine  
1.2kA/40kV  
PFN  
12kA/300V 
Full Sine 
Inductance [uH]  0.7  1.4  2.7  2.1 

 

 

The table below shows the parameters for pulsed magnets in the storage ring. 

Parameter  Septum SEI-3  Pre-Septum SEP-3 
Design kick [mrad]  123.9  87.3 
Design field [G]  8000  8000 
Design Current [A]  -  
Length [m]  1.573  1.108 
Peak Field [G]  10000  10000 
Peak Current [A]  12000  12000 
Peak Voltage [V]  310  220 
Operating Point  8303  8005 
Pulse Len./Flat. [us]  600 (L) 600 (L) 
Pulse Rise/Fall [us]  -  
Power Supply  12kA/310V  
Full Sine  
12kA/220V 
Full Sine 
Inductance [uH]  2.3  1.6 

 

References 

G. LeBlanc, M. J. Boland, and Y. E. Tan, “The Australian Synchrotron Project Storage Ring and Injection System Overview”, in Proc. 9th European Particle Accelerator Conf. (EPAC'04), Lucerne, Switzerland, Jul. 2004, paper THPKF005 

S. V. Weber et al., “Final Commissioning Results from the Injection System for the Australian Synchrotron Project”, in Proc. 22nd Particle Accelerator Conf. (PAC'07), Albuquerque, NM, USA, Jun. 2007, paper TUPMN007, pp. 926-928.