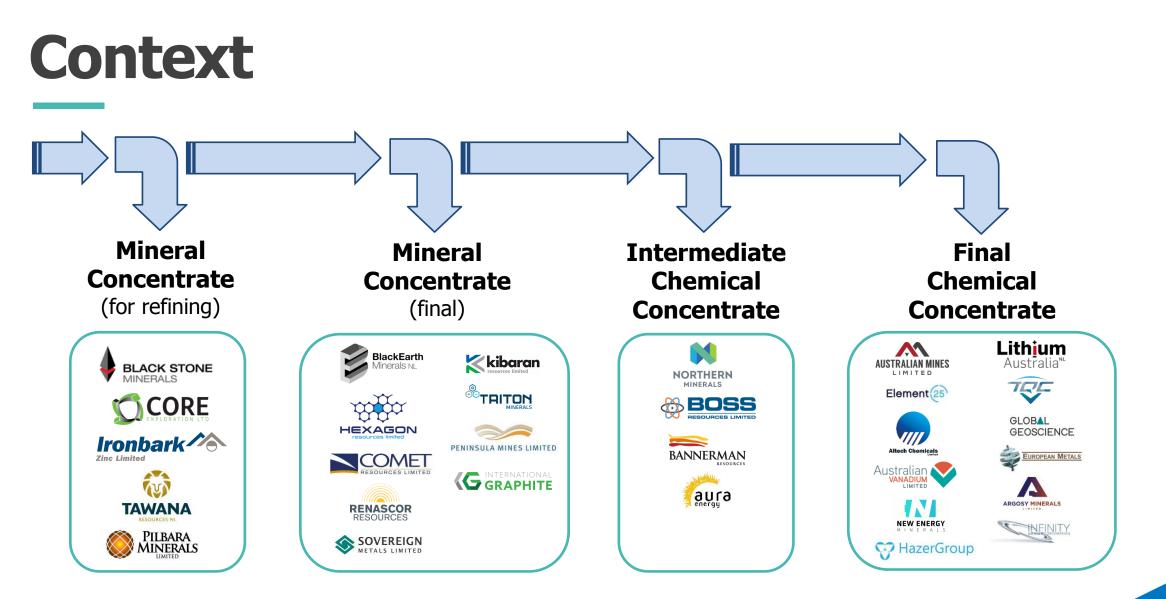


High Purity Concentrate Production – A Challenge for TLEM Developers


Technology and Low Emission Minerals Conference (TLEM) 13th/14th November 2018

Chris Griffith and Bob Ring

Minerals Business Unit, New Illawarra Rd, Lucas Heights, NSW 2234

Science. Ingenuity. Sustainability.

Majority of projects focussed on `final, high purity products'

Three (3) Key Questions

Question 1. "What is high purity?"

Question 2. "How do different high purity concentrate specifications compare?"

Question 3. "What's the problem with analysing high purity concentrates?"

Question 1

"What is high purity?"

> relative to context – mineral versus elemental
e.g. 99% mineral purity vs 99% chemical compound

 Exclusively concerned with chemical purity, typically for a given chemical species

e.g. Li₂CO₃, LiOH.H₂O, NiSO₄.6H₂O etc

In some case, at very high purities, only the specification for impurities might be provided

Question 2

• "How do different high purity concentrate specifications compare?"

- The intention is to not focus in-depth on each specification, but to simply understand the variation and typical minimum / maximum values of impurities
- Includes lithium, uranium, rare earths, manganese, cobalt, nickel and silica/quartz (ANSTO exposure)

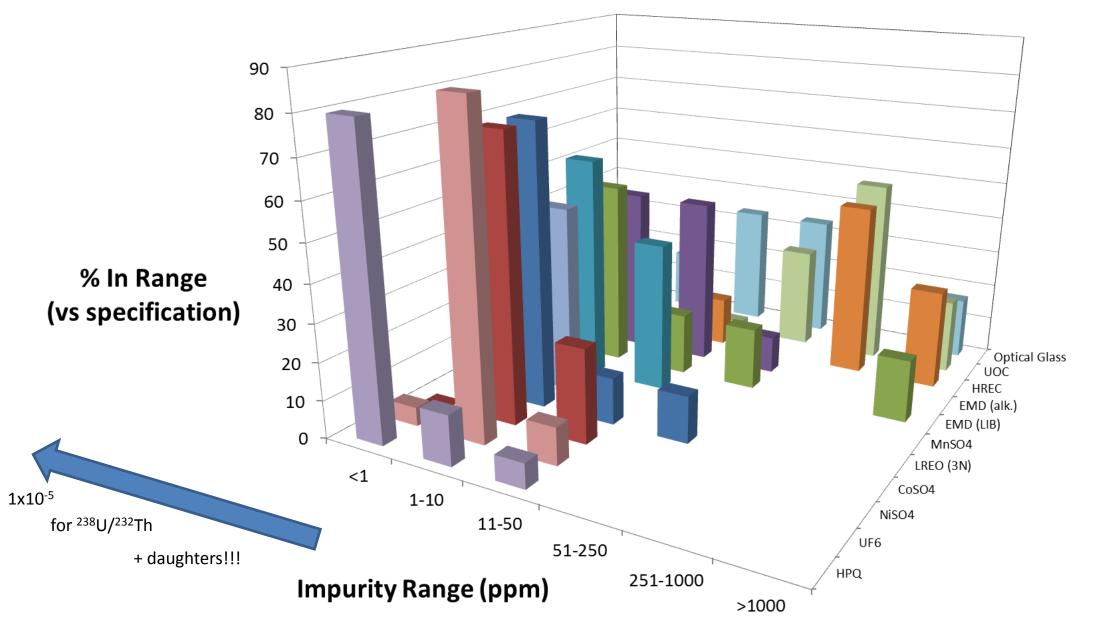
Not intended as exhaustive listing. Obvious extension to HPA & V

Lithium

Source		CLPC BG1	FMC Lithium	EV Grade#	
Spec. Тур	е	Low	High	V. Low	
Li2CO3 (min)	(min) %		99.5	99.6	
H2O*	wt%	ns	0.5	0.1	
Al	ppm	5	10	5	
В	ppm			5	
Са	ppm	60	400	20	
Cr	ppm			1	
Cu	ppm	5	5	1	
F	ppm			50	
Fe	ppm	10	5	5	
К	ppm	10		5	
Mg	ppm	10		10	
Mn	ppm	5		1	
Na	ppm	20	500	10	
Ni	ppm		6	5	
Pb	ppm	20		1	
Si	ppm	40			
Zn	ppm		5		
Cl	ppm	35	100	10	
S	ppm	10	334	50	
SO4	ppm	30	1,000	150	
Acid insolubles	wt%		0.02		
d50	μm	2-8	6		
d90	μm		11		
d100	μm			10	

		FMC					
Source		Lithium	Clariant	SMM			
Spec. Туре		Low 56.5	High	Alt.			
	LiOH (min) %		56.5-58.5	56.5			
H2O*	wt%	Determined by weight loss					
Al	ppm	10					
Са	ppm	15	100	150			
Cd	ppm			1			
Cr	ppm	5		1			
Cu	ppm	5	10				
Fe	ppm	5	20	7			
Hg	ppm			1			
К	ppm	10	50	200			
Mg	ppm		50				
Na	ppm	20	100	80			
Ni	ppm	10					
Pb	ppm	10		1			
Si	ppm	30		200			
Zn	ppm	10	70	5			
Cl	ppm	20	50	50			
S	ppm	33	100				
SO4	ppm	100	300	150			
Sn	ppm			1			
CO2	wt%	0.3	0.5	0.5			
Acid insolubles	wt%	0.01					
d100	μm	ns					

Li₂CO₃ Footnotes CLPC - China Lithium Products Tech.

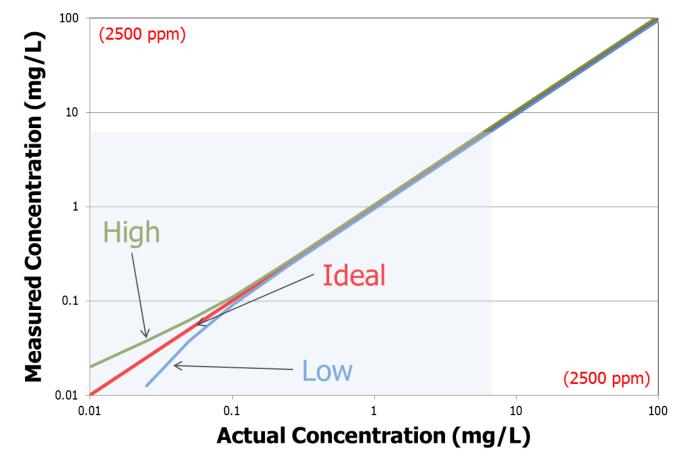

BG - Battery Grade * at 500C / 30 min. # undisclosed source ns - not specified ppm quoted at maximum value

LiOH Footnotes

SMM - Shanghai Metals Market * at 500C / 30 min. ns - not specified ppm quoted at maximum value

Specification Snapshot

Analysis


Element	Technique	Units	Dection Limit (DL)	Comment
Al,As,B,Be,Ca,Fe,K,Li,Mg,Na,P,S,	ICP-OES	ppm	2.5	Digest and analysis at minimum dilution
Si	ICP-OES	ppm	2.5-12.5	Digest and analysis at minimum dilution
Cd,Co,Cr,Cs,Cu, Mn,Mo,Ni,Pb,Rb,Sn,Th,Ti,U,Zn,Zr	ICP-MS	ppm	0.25-1.0	Digest and analysis at minimum dilution
CI,F	ISE	ppm	2.5-12.5	Digest and analysis at minimum dilution
CO2/Ctotal	LECO	ppm	100	Direct measurement
Mass Loss	TGA	ppm	20	Based on % of 25 mg

- Refers to 'routine' analysis methods
- Alternative method development possible MS vs OES
- Total Dissolved Solids (TDS) plays a key role
- But if target (ppm) approaches the DL (ppm)....

Analysis – The Challenge

 Uncertainty defines that analysis `at or near' the DL means is prone to error even in the absence of matrix effects, interferences etc

Analysis – The Challenge

- Tabulated data presentation
- Comparison of effect of reduced detection limit (at 12.5 ppm)
- Requires a change to mindset analysis, interpretation and expectation
- At $\sqrt{100}$ levels, conventional analysis methods are likely to be inappropriate

STO

Measured	Assumed	Calculated Solid Analysis (ppm)		Measured	Assumed	Assumed Calculated Solid Anal			
(ICP-MS)	Error	Ideal	High	Low	(ICP-OES)	Error	Ideal	High	Low
(mg/L)	(%)		(ppm)		(mg/L)	(%)		(ppm)	
5	5	125	131	119	50	5	1250	1313	1188
2.5	5	63	66	59	25	5	625	656	594
1	5	25	26	24	10	5	250	263	238
0.5	5	12.5	13	12	5	5	125	131	119
0.25	5	6.3	6.6	5.9	2.5	5	62.5	66	59
0.1	10	2.5	2.8	2.3	1	10	25	28	23
0.05	25	1.25	1.6	0.9	0.5	25	12.5	16	9
0.025	50	0.625	0.9	0.3	0.25	50	6.25	9	3
0.01	100	0.25	0.5	0.0	0.1	100	2.5	5	0

Take Home Messages

Take Home Messages

• "Don't look, and you are guaranteed to not find anything wrong."

"To combat the issue, the company will build a US\$25 million ion exchange system to remove the uranium, with commissioning expected by the end of June 2019 quarter, subject to approvals."

Take Home Messages

- Specifications varying depending on the intended application and purpose – little value in comparing `apples with oranges'
- Any specification dealing with >99.5% purity is going to `tight' on a number or for most elements
- ALL projects which target such products will be challenged
- A change to mindset is required w.r.t. analysis, interpretation and expectation involving project development teams, service providers and vendors alike

Thank you

